A component architecture for artificial neural network systems
نویسنده
چکیده
The main focus of the PhD thesis is about automating the implementation of artificial neural networks (ANNS) models by applying object/ and component technology. Though various ANN models exist, the aspect of how to provide reusable components in that domain for efficiently implementing adequate system architectures has been barely investigated. The prototypical component framework that was designed and implemented in the realm of the dissertation is compared to existing approaches for generically implementing ANN models and simulations. The application of ANNs faces difficulties such as limits of hardware resources and appropriate software solutions. How the ANN components harness parallelization on networked computers represents a contribution to the state-of-the-art in mobile code and distributed systems. The software architecture was defined in a way to facilitate the automated parallelization at the level of the inner execution of an ANN and at the level of the simulation of different ANNs at the same time, on one computing node or on different computing nodes in a distributed way. The Combinatorial Network Model (CNM) was chosen as case study for implementing parallelism at the level of the ANN structure. The improvement of one of the ANN models, namely the CNM, represents a contribution to the area of ANNs itself and to data mining. The original CNM algorithm could be significantly enhanced regarding the aspect how it deals with the search space, which results in a faster execution and less memory allocation. A sketch of research issues that result from the PhD work rounds out the thesis.
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملA New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort
Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...
متن کاملPredicting Force in Single Point Incremental Forming by Using Artificial Neural Network
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
متن کاملEstimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network
In this study, the use of the three-layer feed forward neural network has been investigated for estimating of infinite dilute diffusion coefficient ( D12 ) of supercritical fluid (SCF), liquid and gas binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, critical pressure, critical volume, normal boiling point, molecular volume in normal boilin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002